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Abstract - In this work we are developing a code for matching the given image with the pre given 
image and displaying the information about it while keeping the error limitations in mind or 
displaying a negation remark. This is being done by the help of matlab simple and user friendly 
features. Thus making it simple, efficient and providing wide applications. It is based on information 
theory concepts, a computational model that best describes a face, by extracting the most relevant 
information contained in that face. Eigenfaces approach is a principle component analysis method, in 
which a small set of characteristic picture are used to describe the variation between face images. 
Goal is to find out the eigenvectors (eigenfaces) of the covariance matrix of the distribution, spanner 
by a training set of face images [1]. 
Later, every face image is represented by a linear combination of these eigenvectors. Evaluations of 
these eigenvectors are quite difficult for typical image sizes but, an approximation that is suitable for 
practical purpose is also presented. 
Recognition is performed by projecting a new image into the subspace spanned by the eigenfaces and 
then classifying the face by comparing its position in face space with the position of known 
individuals. 
A face recognition system, based on the eigenfaces approach is proposed. Eigenfaces approach seems 
to be an adequate method to be used in face recognition due to its simplicity, speed and learning 
capability. Experimental results are given to demonstrate the viability of the proposed face 
recognition method. 
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I.      Introduction 

   
  Facial scan is an effective biometric attribute/indicator. 
Different biometric indicators are suited for different 
kinds of identification applications due to their 
variations in intrusiveness, accuracy, cost, and ease of 
sensing (see Figure1.3 (a))[2]. Among the six biometric 
indicators considered in facial features scored the 
highest compatibility, shown in Figure1.3 (b), in a 
machine readable travel documents (MRTD) system 
based on a number of evaluation factors. 

 
 

 
 
 

 
     (a)                 (b) 
 

Fig.1. Comparison of various biometric features: 
                        (a) based on zephyr analysis; 

(b) based on MRTD compatibility. 



                                     International Journal of advancement in electronics and computer engineering (IJAECE)         
                                                                                       Volume 1, Issue1, April 2012, pp.39-43, ISSN 2278 - 1412  

                                                                                                                                 Copyright © 2012: IJAECE (www.ijaece.com) 
 

 

[40] 
 

 
II. Existing Methods of Face    Recognition 
  
  The basic question relevant for face classification is 
that; what form the structural code (for encoding the 
face) should take to achieve face recognition. Two 
major approaches are used for machine identification of 
human faces; geometrical local feature based methods, 
and holistic template matching based systems. Also, 
combinations of these two methods, namely hybrid 
methods, are used. Whichever method is used, the most 
important problem in face recognition is the curse of 
dimensionality problem. Appropriate methods should be 
applied to reduce the dimension of the studied space. 
Working on higher dimension causes over fitting where 
the system starts to memorise. Also, computational 
complexity would be an important problem when 
working on large databases. The recognition techniques 
are grouped as statistical and neural based approaches.  

 
  PCA is a form of appearance based method of face 
recognition as shown in the figure 2 . 

 

 
 

  
 

Fig. 2 Face recognition algorithms 
 
            III.     Principal Component Analysis 
 
  The Principal Component Analysis (PCA) is one of the 
most successful techniques that have been used in image 
recognition and compression. PCA is a statistical 
method under the broad title of factor analysis. The 
purpose of PCA is to reduce the large dimensionality of 
the dataspace (observed variables) to the smaller 
intrinsic dimensionality of feature space (independent 
variables), which are needed to describe the data. 

   In the language of information theory, the relevant 
information in a face image is extracted, encoded as efficiently 
as possible, and then compared with a database of models 
encoded similarly. A simple approach to extracting the 
information contained in an image of a face is to somehow 
capture the variation in a collection of face images, independent 
of any judgment of features, and use this information to encode 
and compare individual face images economically. This is the 
case when there is a strong correlation between observed 
variables. 
  The main idea of using PCA for face recognition is to express 
the large 1-D vector of pixels constructed from 2-D facial image 
into the compact principal components of the feature space. This 
can be called eigenspace projection. Eigenspace is calculated by 
identifying the eigenvectors of the covariance matrix derived 
from a set of facial images (vectors). 
  Before getting to a description of PCA, this chapter first 
introduces mathematical concepts that will be used in PCA. It 
covers standard deviation, covariance, eigenvectors and 
eigenvalues. This background knowledge is meant to make the 
understanding of PCA very straightforward. 

 
         IV.   Background Mathematics and 
Definitions 
 

IV.1     Statistics 
 

  The entire subject of statistics is based around the idea that we 
have this big set of data, and we want to analyze that set in 
terms of the relationships between the individual points in that 
data set.  

IV.2    Standard Deviation. 
 

  To understand standard deviation, we need a data set. 
Statisticians are usually concerned with taking a sample of a 
population. To use election polls as an example, the population 
is all the people in the country, whereas a sample is a subset of 
the population that the statisticians measure. The great thing 
about statistics is that by only measuring (in this case by doing a 
phone survey or similar) a sample of the population, you can 
work out what is most likely to be the measurement if you used 
the entire population. Here’s an example set: 

X= [1 2 4 6 12 15 25 45 68 67 65 98] 
X   refer to this entire set of numbers. The mean of the sample is 
given by the formula  

 
Unfortunately, the mean doesn’t tell us a lot about the data 
except for a sort of middle point. For example, these two data 
sets have exactly the same mean (10), but are obviously quite 
different: 
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    [0 8 12 20] and [8 9 
11 12]   
  It is the spread of the data that is different. The 
Standard Deviation (SD) of a data set is a measure of 
how spread out the data is. SD is given by the formula 

                                  

 
   SD is the average distance from the mean of the data 
set to a point. The data set given below 
     [10 10 10 10]   
has a mean of 10, but its standard deviation is 0, because 
all the numbers are the same None of them deviate from 
the mean. 
 

IV.3.    Variance.  
 

  Variance is another measure of the spread of data in a 
data set. In fact it is almost identical to the standard 
deviation. The formula is simply the SD squared.                                    
                             

 
IV.4    Covariance.  

 
  The last two measures we have looked at are purely 1-
dimensional. However many data sets have more than 
one dimension, and the aim of the statistical analysis of 
these data sets is usually to see if there is any 
relationship between the dimensions. 
  Covariance is such a measure. Covariance is always 
measured between two dimensions. If you calculate the 
covariance between one dimension and itself, you get the 
variance. So, if you had a three-dimensional data set 
(x,y,z), then you could measure the covariance between 
x and y dimensions , the x and z dimensions and the y 
and z dimensions The formula for covariance is very 
similar to the formula for variance. The formula for 
variance could also be written like this  
  

   

The formula for covariance is given by    
      

  
  The exact value of covariance is not as important as it’s sign 
(ie. Positive or negative). If the value is positive, then it 
indicates that both dimensions increase together. If the value is 
negative, then as one dimension increases, the other decreases. 
If the covariance is zero, it indicates that the two dimensions are 
independent of each other. 

 
IV.5.     The Covariance Matrix. 

  
  Covariance (cov) is always measured between two dimensions. 
If we have a data set with more than two dimensions, there is 
more than one cov measurement that can be calculated. For 
example, from a three dimensional data set (dimensions x,y,z ) 
you could calculate cov (x,y) , cov (y,z) , cov (y,z) . In fact, for 
an n dimensional data set, you can calculate  

 
different covariance values. 
  A useful way to get all the possible cov values between all the 
different dimensions is to calculate them all and put them in a 
matrix. So, the definition for the cov matrix for a set of data 
with n dimensions is :  

 
   Cmxn=(ci,j , ci,j =cov(Dimi, Dimj)) 
 
  where Cmxn is a matrix with n rows and n columns and Dimx is 
the xth dimension. The entry on row 2, column 3 is the cov value 
calculated between the 2nd dimension and the 3rd dimension. 
 
                        IV.6    Eigen Vector, Eigen Value. 
  
  Transformations of space such as translation (or shifting the 
origin), rotation, reflection, stretching, compression, or any 
combination of these; other transformations could also be listed 
may be visualized by the effect they produce on vectors. Vectors 
can be visualised as arrows pointing from one point to another.  

(a) Eigenvectors of transformations are vectors which are 
either left unaffected or simply multiplied by a scale 
factor after the transformation. an eigenvector of a 
transformation is a non-null vector whose direction is 
unchanged by that transformation. 

(b) An eigenvector's eigenvalue is the scale factor that it 
has been multiplied.  
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(c) The geometric multiplicity of an eigenvalue is 
the dimension of the associated eigenspace. 

(d) The spectrum of a transformation on finite 
dimensional vector spaces is the set of all its 
eigenvalues. 
For instance, an eigenvector of a rotation in 

three dimensions is a vector located within the axis about 
which the rotation is performed. The corresponding 
eigenvalue is 1 and the corresponding eigenspace 
contains all the vectors parallel to the axis. As this is a 
one-dimensional space, its geometric multiplicity is one. 
This is the only eigenvalue of the spectrum (of this 
rotation) that is a real number. 

A standing wave in a rope fixed at its 
boundaries can be seen as an example of an eigenvector, 
or more precisely, an eigen function of the 
transformation corresponding to the passage of time. As 
time passes, the standing wave is scaled but its shape is 
not modified. In this case the eigenvalue is time 
dependent. 
 
                   V.        Conclusion 

 
  This work is based on eigenface approach that gives 
an accuracy maximum of about 92.5%. PCA algorithms 
may be used to obtain an optimum threshold value. 
There is scope for future betterment of the algorithm by 
using Statistical technique that can give better results. 
  Instead of having a constant threshold, it could be 
made adaptive, depending upon the conditions and the 
database available, so as to maximise the accuracy. The 
whole software is dependent on the database and the 
database is dependent on resolution of camera. So if 
good resolution digital camera or good resolution 
analog camera is used , the results could be considerably 
improved. 
  Many methods of making computers recognize faces 
were limited by the use of improvished face models and 
feature descriptions(matching simple distances), 
assuming that a face is no more than the sum of its 
parts, the individual features. They tend to hide much of 
the pertinent information in the weights that makes it 
difficult to modify and evaluate parts of the approach. 
  This particular method using Principal Component 
Analysis for face recognition is motivated by 
information theory, leading to basing face recognition 
on a small set of image features that best approximates 
the set of known face images, without regarding that 
they correspond to our intuitive notions of facial parts 
and features. 
  The eigenface approach provides a practical solution 
that is well fitted for the problem of face recognition. It 

is fast, relatively simple, and works well in a constrained 
environment. Certain issues of robustness to changes in 
lighting, head size, and head orientation, the tradeoffs between 
the number of eigenfaces necessary for unambiguous 
classification are matter of concern. 
 
 

VI.     Future Scope 
 

  The current recognition system has been designed for frontal 
views of the images. A neural network architecture (may be 
together with a feature based approach) can be implemented in 
which the orientation of the face is first determined, and them 
the most suitable recognition method is selected. 
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